Vedci navodzujú stav podobný hibernácii pomocou ultrazvukovej stimulácie mozgu
Autor:
Vedci z Washingtonskej univerzity v St. Louis podľa štúdie vyvinuli metódu na vyvolanie stavu podobného tremoru u cicavcov pomocou ultrazvukovej stimulácie mozgu. metabolizmus prírody, Neinvazívna technika by sa mohla potenciálne použiť v scenároch vesmírnych letov alebo u pacientov s vážnymi zdravotnými problémami, aby sa ušetrila energia a teplo.
Niektoré cicavce a vtáky majú šikovný spôsob, ako si ušetriť energiu a teplo prechodom do pokoja, počas ktorého klesá ich telesná teplota a rýchlosť metabolizmu, čím sa možno vyhnúť potenciálne smrteľným podmienkam v prostredí, ako je extrémny chlad alebo nedostatok potravy. . Zatiaľ čo podobný stav bol navrhnutý v 60-tych rokoch pre vedcov lietajúcich vo vesmíre alebo pre pacientov so život ohrozujúcimi zdravotnými stavmi, bezpečné vytvorenie takéhoto stavu bolo ťažko dosiahnuteľné.
Hong Chen, docent na Washingtonskej univerzite v St. Louis, a multidisciplinárny tím navodili u myší euforický stav pomocou ultrazvuku na stimuláciu preoptickej oblasti hypotalamu v mozgu, ktorá reguluje telesnú teplotu a metabolizmus, pomáha regulovať. Okrem myši, ktorá sa prirodzene dostáva do kľudového stavu, Chen a jeho tím navodili dormanciu u potkana, ktorý nie. Ich zistenia boli publikované 25. mája v časopise metabolizmus prírodyukazujú prvú neinvazívnu a bezpečnú metódu na vyvolanie stavu podobného stuporu zacielením na centrálny nervový systém.
Chenov tím použil ultrazvuk na bezpečné, neinvazívne vyvolanie stavu podobného letargii u potkanov. Poďakovanie: Video s láskavým dovolením Chen Laboratory, Washington University v St. Louis
Chen, docent biomedicínskeho inžinierstva na McKelvey School of Engineering a radiačnej onkológie na School of Medicine, a jeho tím, vrátane postdoktorandského výskumného spolupracovníka Yaohenga (Mac) Yang, vytvorili nositeľný ultrazvukový prevodník na stimuláciu neurónov. Predoptická oblasť hypotalamu. Pri vzrušení myši vykazovali pokles telesnej teploty asi o 3 stupne.[{“ attribute=““>Celsius for about one hour. In addition, the mice’s metabolism showed a change from using both carbohydrates and fat for energy to only fat, a key feature of torpor, and their heart rates fell by about 47%, all while at room temperature.
The team also found that as the acoustic pressure and duration of the ultrasound increased, so did the depth of the lower body temperature and slower metabolism, known as ultrasound-induced hypothermia and hypometabolism (UIH).
“We developed an automatic closed-loop feedback controller to achieve long-duration and stable ultrasound-induced hypothermia and hypometabolism by controlling of the ultrasound output,” Chen said. “The closed-loop feedback controller set the desired body temperature to be lower than 34 C, which was previously reported as critical for natural torpor in mice. This feedback-controlled UIH kept the mouse body temperature at 32.95 C for about 24 hours and recovered to normal temperature after ultrasound was off.”
To learn how ultrasound-induced hypothermia and hypometabolism is activated, the team studied the dynamics of the activity of neurons in the hypothalamus preoptic area in response to ultrasound. They observed a consistent increase in neuronal activity in response to each ultrasound pulse, which aligned with the changes in body temperature in the mice.
“These findings revealed that UIH was evoked by ultrasound activation of hypothalamus preoptic area neurons,” Yang said. “Our finding that transcranial stimulation of the hypothalamus preoptic area was sufficient to induce UIH revealed the critical role of this area in orchestrating a torpor-like state in mice.”
Chen and her team also wanted to find the molecule that allowed these neurons to activate with ultrasound. Through genetic sequencing, they found that ultrasound activated the TRPM2 ion channel in the hypothalamus preoptic area neurons. In a variety of experiments, they showed that TRPM2 is an ultrasound-sensitive ion channel and contributed to the induction of UIH.
In the rat, which does not naturally go into torpor or hibernation, the team delivered ultrasound to the hypothalamus preoptic area and found a decrease in skin temperature, particularly in the brown adipose tissue region, as well as about a 1 degree C drop in core body temperature, resembling natural torpor.
This multidisciplinary team consists of Jonathan R. Brestoff, MD, PhD, an assistant professor of pathology and immunology at the School of Medicine; Alexxai V. Kravitz, an associate professor of psychiatry, of anesthesiology and of neuroscience at the School of Medicine, and Jianmin Cui, a professor of biomedical engineering at the McKelvey School of Engineering, all at Washington University in St. Louis. The team also includes Michael R. Bruchas, a professor of anesthesiology and of pharmacology at the University of Washington.
“UIH has the potential to address the long sought-after goal of achieving noninvasive and safe induction of the torpor-like state, which has been pursued by the scientific community at least since the 1960s,” Chen said. “Ultrasound stimulation possesses a unique capability to noninvasively reach deep brain regions with high spatial and temporal precision in animal and human brains.”
Reference: “Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound” by Yaoheng Yang, Jinyun Yuan, Rachael L. Field, Dezhuang Ye, Zhongtao Hu, Kevin Xu, Lu Xu, Yan Gong, Yimei Yue, Alexxai V. Kravitz, Michael R. Bruchas, Jianmin Cui, Jonathan R. Brestoff and Hong Chen, 25 May 2023, Nature Metabolism.
DOI: 10.1038/s42255-023-00804-z
This work was supported by the National Institutes of Health (R01MH116981, UG3MH126861, R01EB027223, and R01EB030102). JRB is supported by NIH (DP5 OD028125) and Burroughs Wellcome Fund (CAMS #1019648).
Web nerd. Organizátor extrémov. Spisovateľ. Evanjelista celkom potravín. Certifikovaný introvert.