Brilantný výskum ukazuje, ako cvičenie posilňuje zdravie mozgu chemickými signálmi
Štúdia chemických signálov zo zmršťujúcich sa svalových buniek poukazuje na spôsoby, ako zlepšiť zdravie mozgu cvičením.
Výskumníci spoločnosti Beckman skúmajú, ako chemické signály zo svalovej kontrakcie podporujú zdravú myseľ. Ich zistenia vysvetľujú, ako tieto signály pomáhajú novým mozgovým sieťam rásť a byť regulované, čo ukazuje cestu k zlepšeniu zdravia mozgu prostredníctvom cvičenia.
Fyzická aktivita sa často uvádza ako prostriedok na zlepšenie fyzického a duševného zdravia. Vedci z Beckmanovho inštitútu pre pokročilú vedu a technológiu ukázali, že môže priamo zlepšiť aj zdravie mozgu. Skúmali, ako chemické signály spúšťané svalovým cvičením podporujú rast neurónov v mozgu.
Jeho práca bola publikovaná v časopise neuroveda,
Keď sa svaly počas cvičenia stiahnu, ako napríklad biceps pracujúci na zdvíhaní ťažkej váhy, uvoľňujú do krvného obehu rôzne zlúčeniny. Tieto zlúčeniny môžu cestovať do rôznych častí tela vrátane mozgu. Vedci sa zaujímali najmä o to, ako môže cvičenie prospieť určitej časti mozgu nazývanej hipokampus.
„Hippocampus je dôležitou oblasťou pre učenie a pamäť, a teda aj kognitívne zdravie,“ povedal Yoon Lee, Ph.D. povedal. študent strojárstva a inžinierstva na University of Illinois Urbana-Champaign a hlavný autor štúdie. Pochopenie toho, ako cvičenie prospieva hipokampu, môže preto viesť k terapiám založeným na cvičení pre rôzne stavy.[{“ attribute=““>Alzheimer’s disease.
To isolate the chemicals released by contracting muscles and test them on hippocampal neurons, the researchers collected small muscle cell samples from mice and grew them in cell culture dishes in the lab. When the muscle cells matured, they began to contract on their own, releasing their chemical signals into the cell culture.
The research team added the culture, which now contained the chemical signals from the mature muscle cells, to another culture containing hippocampal neurons and other support cells known as astrocytes. Using several measures, including immunofluorescent and calcium imaging to track cell growth and multi-electrode arrays to record neuronal electrical activity, they examined how exposure to these chemical signals affected the hippocampal cells.
The results were striking. Exposure to the chemical signals from contracting muscle cells caused hippocampal neurons to generate larger and more frequent electrical signals — a sign of robust growth and health. Within a few days, the neurons started firing these electrical signals more synchronously, suggesting that the neurons were forming a more mature network together and mimicking the organization of neurons in the brain.
However, the researchers still had questions about how these chemical signals led to growth and development of hippocampal neurons. To uncover more of the pathway linking exercise to better brain health, they next focused on the role of astrocytes in mediating this relationship.
“Astrocytes are the first responders in the brain before the compounds from muscles reach the neurons,” Lee said. Perhaps, then, they played a role in helping neurons respond to these signals.
The researchers found that removing astrocytes from the cell cultures caused the neurons to fire even more electrical signals, suggesting that without the astrocytes, the neurons continued to grow — perhaps to a point where they might become unmanageable.
“Astrocytes play a critical role in mediating the effects of exercise,” Lee said. “By regulating neuronal activity and preventing hyperexcitability of neurons, astrocytes contribute to the balance necessary for optimal brain function.”
Understanding the chemical pathway between muscle contraction and the growth and regulation of hippocampal neurons is just the first step in understanding how exercise helps improve brain health.
“Ultimately, our research may contribute to the development of more effective exercise regimens for cognitive disorders such as Alzheimer’s disease,” Lee said.
Reference: “Astrocyte-mediated Transduction of Muscle Fiber Contractions Synchronizes Hippocampal Neuronal Network Development” by Ki Yun Lee, Justin S. Rhodes and M. Taher A. Saif, 2 February 2023, Neuroscience.
DOI: 10.1016/j.neuroscience.2023.01.028
In addition to Lee, the team also included Beckman faculty members Justin Rhodes, a professor of psychology; and Taher Saif, a professor of mechanical science and engineering and bioengineering.
Funding: NIH/National Institutes of Health, National Science Foundation
Web nerd. Organizátor extrémov. Spisovateľ. Evanjelista celkom potravín. Certifikovaný introvert.